The big picture: using wildflower strips for pest control
The impact of arable farming on soil ecosystems has been likened to creating a “gangsters’ paradise” by one of the authors of new research aimed at helping damaged soils recover.
Based on a unique 50-year field experiment, the study shows that common farming practices such as ploughing, fertilising and adding pesticide to fields results in a chaotic new (microbial) world order where nitrogen stealing archaea and killer fungi have muscled their way in at the expense of many plant beneficial fungi.
The research also found the more ‘nutritionally monotonous’ arable soil environment has led many bacteria to ‘reduce their running costs’ by jettisoning more than 600 of the genes usually needed when faced with the diverse range of food sources found in grasslands or pastures.
This means that typical measures of soil biodiversity aren’t adequately explaining what is going on in soil - as farming not only changes the number and relatedness of the species present, but also the genetic complement of the community as a whole.
Using soil samples from the long running Highfield-Ley experiment, the team from Rothamsted Research and the US Department of Energy’s Pacific Northwest National Laboratory compared arable soils with their original grassland state, as well as bare soils that have been left fallow for over 50 years.
According to lead author, Professor Andy Neal, when grassland is converted to arable, the richness of species doesn’t change very much, but new species move in, and they don’t necessarily fill the same ecological roles.
“Following ploughing, the combination of species ‘floating’ around as potential immigrants combined with the influence of existing community members upon these newcomers means that there is an increased randomness to the community assembly – and the communities are less resistant to the establishment of pathogens as a result. It’s the microbial equivalent of a gangsters’ paradise.”
Compared to their original grassland state, arable soils had fewer, but more varied, species of fungi. Mycorrhizal fungi, those that form mutual beneficial associations with plants and play important roles in plant nutrition, are reduced in favour of pathogenic fungi that survive by attacking insects, plants and lichen.
The researchers also saw a greater variety of bacteria in arable soil, whilst the total number of species of archaea - a group of single cell organisms members of which generate the greenhouse gas nitrous oxide as a by-product of ammonia oxidation – also increased in response to fertilization.
The results also show that the responses of these three different types of organisms varied markedly depending on the physical and chemical challenge presented by farmers.
According to Professor Neal, ploughing seems to increase the randomness in which communities of bacteria and archaea assemble within soil - whereas applying fungicide leads to more consistent assembly of fewer, presumably resistant, fungal species.
“Farming practices cause physical disruption and alter the nutritional inputs, which means less diverse plant materials and more readily available nitrogen to soil. As a result, some species lose out allowing new ones – often with very different ways of making a living - to thrive. Even those that survive have had to change the way they live their lives,” he said.
The move from grassland to either bare soil or arable land impacted the genomes of bacteria and archaea, with organisms in arable soil having approximately 650 fewer, and those in bare soil having about 1,300 fewer genes, compared to organisms in grasslands.
Prof Neal said: “Bacteria have a habit of losing genes if there is not a good reason to keep them, it’s a ‘use it or lose it’ situation. What we think is happening here is they no longer need the functions these genes code for, and the genome length is reduced as a consequence.”
As elsewhere, biodiversity loss in soil is of great concern, he added.
“We rely on soil to grow almost all of our food, but perhaps surprisingly we know little about how the way we manage soils affects the microbial communities which support soil fertility, provide clean water and regulate greenhouse gas emissions.
“With this research, we wanted to evaluate the consequences of long-term management, particularly physical disruption by ploughing and altered soil nutrition. What was most surprising was that diversity was less responsive than the gene complement in the soils, suggesting that our monoculture based arable farming causes severe losses of function in soil communities.”
For more information, please contact Prof Andy Neal
Rothamsted Research is the longest-running agricultural research institute in the world. We work from gene to field with a proud history of ground-breaking
discoveries in areas as diverse as crop management, statistical interpretation and soil health. Our founders, in 1843, were the pioneers of modern
agriculture, and we are known for our imaginative science and our collaborative approach to developing innovative farm practice.
Through independent research, we make significant contributions to improving agri-food systems in the UK and internationally, with
economic impact estimated to exceed £3 bn in annual contribution to the UK economy. Our strength lies in our systems approach, which combines strategic research,
interdisciplinary teams and multiple partnerships.
Rothamsted is home to three unique National Bioscience Research Infrastructures which are open to researchers from all over the world:
The Long-Term Experiments,
Rothamsted Insect Survey and the
North Wyke Farm Platform.
We are strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC), with additional support from other national and
international funding streams, and from industry. We are also supported by the Lawes Agricultural Trust (LAT).
The Biotechnology and Biological Sciences Research Council is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid
from the UK government.
BBSRC invests to push back the frontiers of biology and deliver a healthy, prosperous and sustainable future. Through our investments, we build and support a vibrant,
dynamic and inclusive community which delivers ground-breaking discoveries and develops bio-based solutions that contribute to tackling global challenges,
such as sustainable food production, climate change, and healthy ageing.
As part of UK Research and Innovation (UKRI), we not only play a pivotal role in fostering connections that enable the UK’s world-class research and innovation system
to flourish – we also have a responsibility to enable the creation of a research culture that is diverse, resilient, and engaged.
BBSRC proudly forges interdisciplinary collaborations where excellent bioscience has a fundamental role. We pioneer approaches that enhance the equality, diversity,
and inclusion of talent by investing in people, infrastructure, technologies, and partnerships on a global scale.
The Lawes Agricultural Trust, established in 1889 by Sir John Bennet Lawes, supports Rothamsted Research’s national and international agricultural science through the provision of land, facilities and funding. LAT, a charitable trust, owns the estates at Harpenden and Broom's Barn, including many of the buildings used by Rothamsted Research. LAT provides an annual research grant to the Director, accommodation for nearly 200 people, and support for fellowships for young scientists from developing countries. LAT also makes capital grants to help modernise facilities at Rothamsted, or invests in new buildings.