The big picture: using wildflower strips for pest control
A team of scientists from Rothamsted Research have successfully adapted genetic techniques developed for crop improvement to be used in weeds – allowing them, for the first time, to directly study the genetics responsible for herbicide resistance.
Since the invention of weed killers, farmers have been caught in a never-ending arms race with weeds – from the moment of first spraying weeds start to develop resistance to the chemicals – and year on year, the armoury is shrinking.
Writing in the journal Plant Physiology, the group report they have used plant viruses to switch weed genes off, or alternatively, ramp up the production of specific proteins by weeds in the laboratory.
This means that these researchers can now directly show that a specific gene is required for herbicide resistance, or else is sufficient to confer it.
Lead researcher Dr Dana MacGregor said the research was a ‘game-changer’ for weed genetics.
Her latest study focuses on blackgrass, a major weed of cereals and a previous joint study involving Rothamsted, showed that herbicide resistant black-grass could cost £1 billion every year in the UK alone.
Whilst researchers have previously identified genes that are over-represented in black-grass populations with herbicide resistance, there has been no way of genetically manipulating the weeds.
This means scientists have been unable to show that the genes they have identified are even involved - or understand how they provide resistance in the plant.
Dr MacGregor said: “Weeds are arguably one of the most economically important groups of plant species. They have major agronomic and environmental impacts and affect food security. To be able to design and deploy weed management strategies that are both effective and sustainable, we must first understand what genes allow black-grass to avoid the current control practices.
“These virus-mediated techniques allow us to bring black-grass into the lab and ask questions about how specific genes works like we have never been able to before.”
Dr MacGregor’s team used two methods that were developed for studying crop plants, with both taking advantage of the pathways plants and their viruses use to fight one another.
These are called Virus-induced gene silencing (VIGS) and Virus-mediated overexpression (VOX).
The team first inserted their gene of interest into a virus, and then infected the weed with it.
During VIGS, the plant tries to defend itself and in the process shuts down production of all genes coming from the virus - including the weed’s own copies of the inserted gene - whereas during VOX, both the virus’ and the inserted gene’s copies manufacture proteins for the plant.
Having shown that the techniques worked using the appropriate controls, including inducing loss of green colour and making the plants fluoresce, they then turned their attention to genes implicated in herbicide resistance.
This time they used gene silencing to turn off a gene previously thought to confer herbicide resistance. This made previously resistance plants susceptible, thereby proving the involvement of the gene.
They also managed to make previously susceptible weeds resistant to the weed killer glufosinate by introducing a gene for an enzyme that renders the chemical inactive.
According to Dr MacGregor, although these techniques can be further improved, the VIGS and VOX techniques they have established offer a step change in the type of questions that can now be asked in weed biology.
“Of main importance will be to apply these techniques to establish a link between specific genes and ability of black grass to circumvent chemical controls, and thereby to gain a molecular level understanding of what allows black grass to be such a successful weed.”
This work was supported by the Smart Crop Protection Industrial Strategy Challenge Fund and the Biotechnology and Biological Sciences Research Council, part of UKRI.
Weed Molecular Biologist
Rothamsted Research is the longest-running agricultural research institute in the world. We work from gene to field with a proud history of ground-breaking
discoveries in areas as diverse as crop management, statistical interpretation and soil health. Our founders, in 1843, were the pioneers of modern
agriculture, and we are known for our imaginative science and our collaborative approach to developing innovative farm practice.
Through independent research, we make significant contributions to improving agri-food systems in the UK and internationally, with
economic impact estimated to exceed £3 bn in annual contribution to the UK economy. Our strength lies in our systems approach, which combines strategic research,
interdisciplinary teams and multiple partnerships.
Rothamsted is home to three unique National Bioscience Research Infrastructures which are open to researchers from all over the world:
The Long-Term Experiments,
Rothamsted Insect Survey and the
North Wyke Farm Platform.
We are strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC), with additional support from other national and
international funding streams, and from industry. We are also supported by the Lawes Agricultural Trust (LAT).
The Biotechnology and Biological Sciences Research Council is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid
from the UK government.
BBSRC invests to push back the frontiers of biology and deliver a healthy, prosperous and sustainable future. Through our investments, we build and support a vibrant,
dynamic and inclusive community which delivers ground-breaking discoveries and develops bio-based solutions that contribute to tackling global challenges,
such as sustainable food production, climate change, and healthy ageing.
As part of UK Research and Innovation (UKRI), we not only play a pivotal role in fostering connections that enable the UK’s world-class research and innovation system
to flourish – we also have a responsibility to enable the creation of a research culture that is diverse, resilient, and engaged.
BBSRC proudly forges interdisciplinary collaborations where excellent bioscience has a fundamental role. We pioneer approaches that enhance the equality, diversity,
and inclusion of talent by investing in people, infrastructure, technologies, and partnerships on a global scale.
The Lawes Agricultural Trust, established in 1889 by Sir John Bennet Lawes, supports Rothamsted Research’s national and international agricultural science through the provision of land, facilities and funding. LAT, a charitable trust, owns the estates at Harpenden and Broom's Barn, including many of the buildings used by Rothamsted Research. LAT provides an annual research grant to the Director, accommodation for nearly 200 people, and support for fellowships for young scientists from developing countries. LAT also makes capital grants to help modernise facilities at Rothamsted, or invests in new buildings.